The inner cavity of Escherichia coli DegP protein is not essential for molecular chaperone and proteolytic activity.
نویسندگان
چکیده
The Escherichia coli DegP protein is an essential periplasmic protein for bacterial survival at high temperatures. DegP has the unusual property of working as a chaperone below 28 degrees C, but efficiently degrading unfolded proteins above 28 degrees C. Monomeric DegP contains a protease domain and two PDZ domains. It oligomerizes into a hexameric cage through the staggered association of trimers. The active sites are located in a central cavity that is only accessible laterally, and the 12 PDZ domains act as mobile sidewalls that mediate opening and closing of the gates. As access to the active sites is restricted, DegP is an example of a self-compartmentalized protease. To determine the essential elements of DegP that maintain the integrity of the hexameric cage, we constructed several deletion mutants of DegP that formed trimers rather than hexamers. We found that residues 39 to 78 within the LA loops, as well as the PDZ2 domains are essential for the integrity of the DegP hexamer. In addition, we asked whether an enclosed cavity or cage of specific dimensions is required for the protease and chaperone activities in DegP. Both activities were maintained in the trimeric DegP mutants without an enclosed cavity and in deletion DegP mutants with significantly reduced dimensions of the cage. We conclude that the functional unit for the protease and chaperone activities of DegP is a trimer and that neither a cavity of specific dimensions nor the presence of an enclosed cavity appears to be essential for the protease and chaperone activities of DegP.
منابع مشابه
DegP Chaperone Suppresses Toxic Inner Membrane Translocation Intermediates
The periplasm of Gram-negative bacteria includes a variety of molecular chaperones that shepherd the folding and targeting of secreted proteins. A central player of this quality control network is DegP, a protease also suggested to have a chaperone function. We serendipitously discovered that production of the Bordetella pertussis autotransporter virulence protein pertactin is lethal in Escheri...
متن کاملRole of the PDZ domains in Escherichia coli DegP protein.
PDZ domains are modular protein interaction domains that are present in metazoans and bacteria. These domains possess unique structural features that allow them to interact with the C-terminal residues of their ligands. The Escherichia coli essential periplasmic protein DegP contains two PDZ domains attached to the C-terminal end of the protease domain. In this study we examined the role of eac...
متن کاملEnhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli
Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic act...
متن کاملRole of Molecular Interactions and Oligomerization in Chaperone Activity of Recombinant Acr from Mycobacterium tuberculosis
Background: The chaperone activity of Mycobacterium tuberculosis Acr is an important function that helps to prevent misfolding of protein substrates inside the host, especially in conditions of hypoxia. Objectives: The aim of this study was to establish the correlation of structure and function of recombinant Acr proteins both before and after ge...
متن کاملEscherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin.
The DegP protein, a multifunctional chaperone and protease, is essential for clearance of denatured or aggregated proteins from the inner-membrane and periplasmic space in Escherichia coli. To date, four natural targets for DegP have been described: colicin A lysis protein, pilin subunits and MalS from E. coli, and high-molecular-weight adherence proteins from Haemophilus influenzae. In vitro, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 189 3 شماره
صفحات -
تاریخ انتشار 2007